Definition of a Quadratic Function

- Let a, b, and c be real numbers with $a \neq 0$, The function $f(x) = ax^2 + bx + c$ is called a QUADRATIC function in standard form.
- "a" is called the leading coefficient
 - o If the leading coefficient is positive, the parabola opens upward (like a smile)
 - If the leading coefficient is negative, the parabola opens downward (like a frown)
- All parabolas are symmetric with respect to a line called the axis of symmetry (Or simply the axis of the parabola)
- The point where the axis intersects the parabola is the vertex of the parabola.

Vertex Form of a Quadratic Function

- The quadratic function $f(x) = a(x-h)^2 + k$, $a \ne 0$ is in vertex form.
- The graph of f is a parabola whose axis of symmetry is the vertical line x = h and whose vertex is (h,k).

Examples

1) Sketch a graph of the parabola and identify the vertex and axis of symmetry of the parabola.

a.
$$f(x) = -2(x-3)^2 + 6$$

vertex (3,6)

axis X=3

vertical stretch by factor

of Z

reffect over X-axis

If a quadratic function is in standard form, it is easier to find the vertex of the graph like this:

The vertex of
$$f(x) = ax^2 + bx + c$$
 is (h,k) , where $h = \frac{-b}{2a}$ and $k = f(h)$

Sketch a graph of the parabola and identify the vertex and x-intercepts of the parabola.

a)
$$g(x)=x^2+2x+1$$

 $h = -\frac{b}{2a} = -\frac{2}{2(1)} = -1$
 $k = g(-1) = (-1)^2 + 2(-1) + 1 = 0$
Vertex = $(h_1k) = (-1,0)$
 $axis x=-1$
 $x-intercept = vertax = (-1,0)$

b)
$$f(x)=x^2+2x-30$$

$$h = -\frac{b}{2a} = \frac{-2}{2(1)} = -1$$

x-intercepts:

$$0 = \chi^{2} + 2\chi - 32$$

$$-2 \pm \sqrt{2^{2} - 4(1)(-3)}$$

$$=) \frac{-2 \pm \sqrt{2^2 - 4(1)(-30)}}{2(1)}$$

Precalculus CP 1

3) The Maximum Height of a Baseball

A baseball is hit at a point 3 feet above the ground at a velocity of 100 feet per second and at an angle of 45 degrees with respect to the ground. The path of the baseball is given by the function

$$f(x) = -0.0032x^2 + x + 3$$

where f(x) is the height of the baseball in feet, and x is the horizontal distance from home plate in feet.

What is the maximum height reached by the baseball?

max is vertex)

$$\frac{-b}{2a} = \frac{-1}{2(-.0032)} = \frac{625}{4} = 156.25$$

$$f(156.25) = 81-125f+$$

4) Finding the Vertex of a Parabola by completing the square! (instead of using $h = \frac{-b}{2a}$)

(note: this method is easiest to use when a = 1)

a)
$$f(x)=x^2+8x+11$$

= $(x^2+8x+16)+1)-16$
= $(x+4)^2-5$

Vertex: (-4, -5)

b) $f(x)=x^2-14x+9$ = $(x^2-14x+49)+9-49$ = $(x-7)^2-40$ Vertex: (7, -40)

- 5) Writing the Equation of a Parabola
 - a) Write the vertex form of the equation of the parabola whose vertex is (1,2) and that passes through the point (0,0).

 Sketch a graph too!

 $f(x) = a(x-1)^{2} + 2$ Prug in (0,0) $f(x) = a(0-1)^{2} + 2$ -2 = a $f(x) = -2(x-1)^{2} + 2$

b) Write the vertex form of the equation of the parabola whose vertex is (4,-1) and that passes through the point (2,3). Sketch a graph too!

 $f(x) = \alpha(x-4)^{2} - 1$ plug in (2,3) $3 = \alpha(2-4)^{2} - 1$ $1 = \alpha$ $1 = \alpha$

6) A study was done to compare the speed x (in miles per hour) with the mileage y (in miles per gallon) of an automobile. The results are shown in the table.

Speed, x	Mileage, y
15	22.3
20	25.5
25	27.5
30	29.0
35	28.8
40	30.0
45	29.9
50	30.2
55	30.4
60	28.8
65	27.4
70	25.3
75	23.3

- a) Use your graphing calculator to create a scatter plot of the data (STAT- EDIT—enter the data)
- b) Use the regression feature of the calculator to find a quadratic model for the data (STAT- CALC- QuadReg (VARS Y-VARS Y₁) ENTER)

- c) Enter the equation you just found into the "y =" so that it graphs the regression on top of the scatter plot.

 (or put Y, Into "Store RegEa")
- d) Estimate the speed for which the mileage is the greatest.

$$45.495857$$
 mpb
 $(30.44)177$ mi)
 $6r = \frac{-b}{2a} = \frac{-.746113886}{2(-.008)998002}$
 $=45.4959$

Homework Day 1: p.134 #1-8, 9, 13, 18, 24, 25, 37, 40, 44, 45, 53, 56, 65 (where it says "standard form" use "vertex form")